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ABSTRACT
This paper describes the development of the CUHTK-Entropic
10xRT Broadcast News Transcription System. Previous HTK broad-
cast news transcription systems have focused on maximising accu-
racy with few constraints on compute power available. In order to
develop a system running in under 10 times real time on a single
CPU, detailed investigation and optimisation of the system archi-
tecture and mode of operation was required. This paper outlines
those developments and discusses the way in which operation under
10xRT was ensured despite variability of the data to be recognised.
On the 1998 test the system produced an average word error rate of
16.1% running in 9.5xRT.

1. Introduction
As the state-of-the-art in broadcast news transcription contin-
ues to improve, interest is growing in the range of applica-
tions for the transcription of such audio sources. However,
most research on such systems is heavily focused on increas-
ing accuracy and there has been relatively few investigations
into the trade-offs between recognition accuracy and speed.

With state-of-the-art offline transcriptions systems becom-
ing steadily more complex and elaborate there is consid-
erable work needed to achieve high accuracy at a reason-
able computational cost. To spur efforts in this direction the
DARPA/NIST 1998 Broadcast News (Hub4) Evaluation in-
cluded a test investigating the performance of systems run-
ning in under 10xRT on a single processor. This paper de-
scribes the development of a less than 10xRT version of the
HTK broadcast news transcription system.

2. 1997 HTK Broadcast News System
The HTK Broadcast News Transcription System [9] used in
the 1997 DARPA/NIST Broadcast News Evaluation used a
multiple pass recognition strategy consisting of:

Segmentation. The continuous stream of data is coded and
split into small homogeneous segments [2].

Initial Decoding. An initial recognition pass is performed
using a set of gender independent cross word
context dependent triphone models together with
a trigram language model.

Lattice Generation. Using the previously generated hy-
pothesis the the speaker gender of each segment
is found, the segments are clustered and then
unsupervised maximum likelihood linear regres-
sion (MLLR) [1] is used to adapt gender de-
pendent triphone models for each segment clus-
ter. Using these adapted models and a bigram
language model a word lattice is generated for
each segment. This word lattice is expanded
to include more complex language model con-
straints including a word 4-gram and a class tri-
gram model [6]. The 1-best transcription from
these lattices is used as input to the next stage.

Quinphone Model Decoding. More complex quinphone
HMMs are used in an iterative adaptation/lattice
decoding procedure constrained by the previ-
ously generated lattices to refine the transcrip-
tion.

ROVER. Transcriptions from the quinphone stage and the
triphone lattice generation stage are combined to
form the final output using a voting mechanism.

While this system produced an error rate of only 15.8% in
the 1997 Hub4 evaluation the system ran in approximately
300xRT on a Sun Ultra 2300. Recently an HTK system
was needed to participate in the Spoken Document Retrieval
(SDR) track of TREC7. This involved transcribing 100 hours
of broadcast news material and this was infeasible with such
a computationally expensive system.

To develop a faster version of the system for SDR purposes a
simpler architecture using fewer decoding passes was needed
and the benefits of each of the various stages was examined.
The initial decoding pass allowing adaptation of gender de-
pendent models increased accuracy significantly. However
further iterations and the use of quinphone models produced
relatively little benefit at considerable computational cost.

Therefore the HTK system designed for the TREC7 SDR
evaluation used only the initial decoding and the lattice gener-
ation stage of the system and furthermore only a 4-gram lan-
guage model was applied (the interpolated category trigram



was not used). The further stages using quinphone models
were discarded (together with the ROVER system combina-
tion phase). These changes reduced the runtime to approxi-
mately 50xRT but increased the word error rate from 15.8%
to 17.4% [4]. The increase in error rate was mainly due to
just using the simpler and computationally more efficient tri-
phone models with additional search errors responsible for
under 0.2% of the errors. The HTK SDR system was used
as the basis for developing a system to operate in less than
10xRT.

3. System Development
The execution time of the HTK SDR system can be bro-
ken down into: segmentation 4xRT; first pass decode 10xRT;
clustering and adaptation 1xRT; second pass decode/lattice
generation 30xRT; and language model application 3xRT.

Although these times were dominated by decoding, a system
operating in under 10xRT requires faster operation of all com-
ponents. The search for these gains were focused in the fol-
lowing areas.

3.1. Platform choice

The choice of computing platform was left open for the
DARPA evaluation and an obvious way decrease runtime is
to increase the speed of the computer used. However know-
ing which machine is best for decoding is not easy. Although
standard benchmarks, such as SPECint95, are useful for com-
paring different systems none of them accurately reflects de-
coding performance.

Accurate comparisons required testing the decoder on each
platform of interest. These tests showed that, although a Sun
Ultra 2300 gave good performance for coding data, training
models and other similar jobs (where compute requirements
were dominated by floating point operations), an Intel Pen-
tium II CPU was significantly faster for decoding. By Octo-
ber 1998, Intel had also released the Pentium II Xeon proces-
sor in which the 512K L2 cache operates at full rather than
half core speed. Therefore a Dell Precision 610 workstation
(with a 450MHz Intel Pentium II Xeon with 512Kb L2 cache)
was chosen as the main compute platform. In tests the faster
cache led to 6-8% faster decoder operation on a Xeon than on
the equivalent Pentium II.

Precision 610 Intel N440BX Ultra 2300
CPU Pentium IIXeon Pentium II Ultra

450MHz 512Kb 450MHz 512Kb 300MHz 2Mb

OS Windows NT RedHat Linux Sun Solaris
Compiler Intel 2.4 gcc 2.7.2 Sun 4.2

Table 1: Platform details

Further tests under different operating systems indicated that

compiler efficiency was also an important issue. The Intel C
compiler (version 2.4) seemed particularly efficient with the
decoder running almost 20% faster than when compiled with
gcc v2.7.2. Table 1 shows details of the various platforms.

It should be noted that, although for convenience some of the
less time critical processes were run on a Sun Ultra 2300 ma-
chine or an Intel PII based machine running Linux, (with the
main decoding jobs run on the Dell Precision 610 under Win-
dows NT), the runtimes quoted for the final 10xRT system are
wall clock times for a single process.

3.2. Segmentation and Classification

The segmenter developed for the 10 times real-time system is
a simplified version of the one used in the 1997 and 1998
Hub4 evaluation for the unconstrained compute system[2].
The simplified segmenter achieves similar accuracy yet runs
approximately four times faster than the full system. Like
the full system it consists of three components: classification,
gender dependent phone recognition and smoothing.

BNeval981 BNeval982
Classification 0.065 0.065
Adaptation (2x) 0.134 0.134
Phone recognition 0.308 0.307
Smoothing/clustering 0.264 0.325

Overall 0.905 xRT 0.964 xRT

Table 2: Segmentation runtime for two halves of the 1998
Hub4 Evaluation Set (BNeval981 and BNeval982)

Speed improvements in the classification stage was achieved
by reducing the number of MLLR adaptation iterations to 2
with decoding in each iteration. The phone recogniser was
simplified by reducing the number of mixture components
per state of each phone to 8. Further speedup was achieved
by more efficient probability computation and caching in de-
coding. Compared to the segmentation used for the uncon-
strained system, this scheme increased the overall word error
rate on the 1997 Hub4 evaluation set, BNeval97, by 0.3%.
The per frame classification accuracy for non-speech was de-
creased by 2% absolute while a further 6 seconds of speech
were incorrectly discarded. The performance degradation
on the 1998 Hub4 evaluation set, BNeval98, was somewhat
higher with a 5% absolute reduction in accuracy for non-
speech classification and 10 seconds additional discarded
speech. Table 2 shows real-time factors for the 1998 Hub4
evaluation set running on a Sun Ultra 2300. Apart from the
smoothing and clustering stage all real-time factors appear to
be data set independent.

3.3. Decoding Parameters

Experiments were performed using the TREC7 SDR system
as a starting point to measure the effect on accuracy of tighter



pruning in the decoder. Experiments varying the decoding
parameters indicated that it was possible to reduce decoding
times by another factor of two without introducing a large
numbers of search errors but that faster decoding (at 1-3 xRT)
resulted in a significant number of search errors. Figure 1
shows the word error rate versus runtime (expressed as xRT
runtime normalised for a Dell Precision 610) for these tests.
These results used a single set of wideband acoustic models
trained on the 1997 training data.

More detailed investigation of the effects of each of the de-
coding parameters together with efficiency improvements and
the use of an optimised set of HMMs allowed the determi-
nation of an improved set of decoding parameters which in-
creased decoding speed by a factor of two without increasing
the error rate.
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Figure 1: Error rate versus runtime

Also shown in Fig. 1 is the accuracy and speed of this final
operating point. Note that although the final operating point
used the same dictionary and language model as the other
points shown, the optimised HMMs were trained on data from
both the 1997 and 1998 training pools which increases accu-
racy by about 0.9%.

3.4. Variability of decode speed

Another concern when designing a system for guaranteed op-
eration in under 10 times real time is the variability in decod-
ing speed over different segments of speech.

Figure 2 shows a graph of segment cluster decode time (for
typical first pass decoder settings) versus duration of the clus-
ter for the first pass decode of BNeval97. This shows that the
real time ratio for decoding can vary widely (from 0.71 to
4.81 xRT).

Attempts to limit the CPU time available for processing each
frame significantly increased the number of search errors.
Consequently, a higher level method of governing the com-
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Figure 2: Variation in decode time

pute requirements was needed. Fortunately, it was found that,
despite using different models (together with adaptation), the
processing time for the second pass decode was much more
closely correlated with the first pass time than the first pass
time is with segment duration (an average correlation of 0.95
versus 0.75).
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Figure 3: Decode time ratio

Figure 3 shows a graph of second pass decode time versus
the first pass decode time. This shows a much more linear
and correlated relationship with a maximum ratio between
second and first pass times of 3.48 and a minimum of 1.61.

This relationship allows us to accurately predict the CPU re-
quirements of the second pass based on the time taken by the
first pass or even to choose the second pass parameters on the
basis of predicted second pass time.

The final 10xRT system adopts this latter approach with the
decoder operating point for the second pass selected to ensure
that the estimated system runtime is under 10xRT. This was
accomplished by estimating the second pass/first pass decode



time ratio for a variety of operating points and using a sim-
ple decision rule to choose the most appropriate configuration
once first pass times were available.

4. Evaluation System Description

The CUHTK-Entropic system used in the 10xRT spoke of
the 1998 DARPA Hub4E Evaluation operates in a number of
stages. First, the audio is processed by the segmenter which
generates three categories of segments: wideband speech,
narrowband speech and music. No further processing of mu-
sic segments takes place and gender assignment of the speech
segments is ignored.

For recognition, a 39 dimensional feature vector consisting of
13 MF-PLP cepstral parameters (includingc0) and their first
and second differentials is used to represent each frame of
data. Cepstral mean normalisation of each segment is applied.

Two sets of cross word triphone context dependent HMMs
were produced from the 1997 and 1998 Broadcast news
training data supplied by the LDC. The first set of models
(HMM1) was used for the initial decoding pass and consisted
of 8893 distinct models sharing 4011 tied states each rep-
resented by a 16 component Gaussian mixture distribution.
State tying was based on decision trees generated by a ver-
sion of the algorithm described in [11].

The models were initially trained on data coded at the full
8kHz bandwidth. These wideband models were then single
pass retrained using the same data with a 125-3750Hz data
analysis data to produce a set of narrowband models.

Word Error Rate (%)
BNdev96ue BNeval97 BNeval98

F0 11.1 12.9 12.1
F1 25.8 19.7 22.2
F2 34.1 27.9 27.5
F3 32.0 32.8 23.9
F4 23.2 25.6 21.8
F5 22.5 25.1 29.4
FX 64.3 43.1 36.5

Overall 26.8 21.4 21.2

Table 3: First pass results

The recogniser used for both the first and second pass is the
LVX decoder which forms part of the version 2 release of
Entropic’s HAPI programming interface [8]. This is a sin-
gle pass time synchronous decoder incorporating cross word
triphones and a trigram language model into a single lattice
generating pass. The 4-gram language model is applied to the
generated lattice to produce the single most likely hypothesis
for each segment.

This hypothesis was then used to determine a gender assign-
ment for each segment as well as estimate a transformation
set for each cluster of segments. Table 3 gives the breakdown
of results from this first pass into NIST “focus” condition for
the BNdev96ue (the 1996 Hub4 unpartioned evaluation de-
velopment test set), BNeval97 and BNeval98 test sets. The
computational requirement for this complete first-pass sys-
tem is about 3xRT.

Gender determination and subsequent recognition used the
gender dependent HMMs (HMM2). These were trained in
the same way as the first pass models but consisted of 13428
distinct models sharing 5606 tied states each represented by a
20 components mixture Gaussian. Retraining on narrow band
data gave both wide and narrow band versions of this model
set for which gender dependent male and female models were
produced.

Gender assignment was performed by rescoring the hypothe-
sis produced by the first pass using models representing both
genders and selecting the one with the highest likelihood to
best represent the segment.

Once the speaker gender had been determined for each seg-
ment a top-down clustering of segments for each gender at
each bandwidth was performed using the covariance based
algorithm described in [3]. This process assigned each seg-
ment to a single cluster and an adaptation transformation set
was generated for each cluster using the results of the first
pass decode as the hypothesis for unsupervised adaptation.

These transform sets were estimated using a computationally
efficient approximation to MLLR. Compared to the exact ap-
proach described in [5] the accuracy is only slightly reduced
(by approximately 0.1% absolute or less than 1% relative) but
the computation required to estimate each transformation set
is significantly reduced.

The second decoding pass used the transforms estimated for
each cluster to adapt the appropriate HMM2 model set and
then decode each segments into a lattice of hypotheses.

The toolkit described in [7] was used to interpolate the 4-
gram language model with the word category trigram. Each
lattice was expanded and augmented to include both the 4-
gram language model and the category trigram probabilities.
These were then interpolated and the overall language model
probability weighted and combined with the acoustic likeli-
hoods (also stored in the lattice) to find the most likely final
hypothesis with a modified A* search. Finally an alignment
procedure was used to determine the word start and end times
to include in the final system output.

Apart from a reduction in the vocabulary from over 65k words
to approximately 60k words the language models and dictio-
naries from the main HTK system [10] were used unchanged.



Word Error Rate
BNdev96ue BNeval97 BNeval98

F0 8.6 9.4 9.7
F1 22.1 15.8 17.6
F2 26.4 19.7 19.1
F3 25.4 25.4 19.5
F4 17.3 19.3 15.7
F5 19.7 19.4 23.4
FX 59.0 30.1 27.3

Overall 22.1 15.8 16.1

Table 4: Final results for various test sets for the full 10xRT
system

The word 4gram model had 5.6 million bigram entries, 9.9
million trigram entries and 7.4 million 4-grams. The cate-
gory trigram contained 850 thousand bigram and 9.4 million
trigram entries for the 1000 categories. The dictionary of pro-
nunciations was derived from the 1993 LIMSI WSJ dictio-
nary, TTS generated pronunciations and hand generated ad-
ditions/corrections.

The word error rate for the final system is shown in Ta-
ble 4. The breakdown of the overall computation time for
each stage shown in Table 5. Comparing Table 4 with Table 3
the advantage of including two passes can clearly be seen: on
BNeval98 the error rate was reduced by 24% while the overall
computation was increased by about a factor of three.

Runtime (xRT) dev96ue eval97 eval98
Segmentation and coding 1.07 1.10 1.09
First pass decode 2.17 1.94 2.09
Gender determine / trans-
form generation

0.63 0.43 0.44

Second pass decode 4.72 4.83 5.52
Final result generation 0.47 0.45 0.34

Total 9.07 8.75 9.48

Table 5: Runtime breakdown for overall 10xRT system

5. Conclusions
Compared with the full 1998 HTK broadcast news transcrip-
tion system the 10xRT system uses simpler acoustic models
(triphones versus quinphones); no vocal tract length normal-
isation; no full variance transform and a simplified decod-
ing strategy. Overall the 10xRT system had a word error rate
2.3% absolute (16% relative) higher than the full system [10]
(which ran in approximately 300xRT) and the same error rate
on the 1997 evaluation data as the full system from a year
earlier [9].

Further improvement should be possible (for example by in-
corporating vocal tract length normalisation) but even so the
CUHTK-Entropic system yielded the lowest overall word er-

ror rate for systems running in less than 10xRT in the 1998
DARPA broadcast news evaluation.
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